
Chapter-8

NP hard and NP Complete problems

8.1 Basic Concepts

The computing times of algorithms fall into two groups.

Group1– consists  of  problems  whose  solutions  are  bounded  by  the  polynomial  of  small 

degree.

Example – Binary search o (log n) , sorting o(n log n), matrix multiplication 0(n 2.81).

NP –HARD AND NP – COMPLETE PROBLEMS

Group2 – contains problems whose best known algorithms are non polynomial.

Example –Traveling salesperson problem 0(n22n), knapsack problem 0(2n/2) etc.

There are two classes of non polynomial time problems

1. NP- hard

2. NP-complete

A problem which is NP complete will have the property that it can be solved in polynomial 

time iff all other NP – complete problems can also be solved in polynomial time.

The class NP (meaning non-deterministic polynomial time) is the set of problems that might 

appear in a puzzle magazine: ``Nice puzzle.'' 

What makes these problems special is that they might be hard to solve, but a short answer can 

always be printed in the back, and it is easy to see that the answer is correct once you see it. 

Example... Does matrix A have LU decomposition? 

No guarantee if answer is ``no''. 



Another way of thinking of NP is it is the set of problems that can solved efficiently by a 

really good guesser. 

The  guesser  essentially  picks  the  accepting  certificate  out  of  the  air  (Non-deterministic 

Polynomial  time).  It  can  then  convince  itself  that  it  is  correct  using  a  polynomial  time 

algorithm. (Like a right-brain, left-brain sort of thing.) 

Clearly this isn't a practically useful characterization: how could we build such a machine?

Exponential Upper bound 

Another useful property of the class NP is that all NP problems can be solved in exponential 

time (EXP). 

This is because we can always list out all short certificates in exponential time and check all 

O (2nk) of them. 

Thus, P is in NP, and NP is in EXP. Although we know that P is not equal to EXP, it is 

possible that NP = P, or EXP, or neither. Frustrating!

NP-hardness 

As we will see, some problems are at least as hard to solve as any problem in NP. We call 

such problems NP-hard. 

How might we argue that problem X is at least as hard (to within a polynomial factor) as 

problem Y? 

If X is at least as hard as Y, how would we expect an algorithm that is able to solve X to 

behave? 

NP –HARD and NP – Complete Problems Basic Concepts

If an NP-hard problem can be solved in polynomial time, then all NP-complete problems can 

be solved in polynomial time.

All NP-complete problems are NP-hard, but all NP- hard problems are not NP-complete.

The class of NP-hard problems is very rich in the sense that it contains many problems from a 

wide variety of disciplines.

P: The class of problems which can be solved by a deterministic polynomial algorithm.



NP: The class of decision problem which can be solved by a non-deterministic polynomial 

algorithm.

NP-hard: The class of problems to which every NP problem reduces

NP-complete (NPC): the class of problems which are NP-hard and belong to NP.

NP-Competence

• How we would you define NP-Complete

• They are the “hardest” problems in NP

8.2 Deterministic and Nondeterministic Algorithms

• Algorithmswiththepropertythattheresultofeveryoperationisuniquelydefinedaretermedd

eterministic

• Such algorithms agree with the way programs are executed on a computer.

• In  a  theoretical  framework,  we can  allow algorithms  to  contain  operations  whose 

outcome are not uniquely defined but are limited to a specified set of possibilities.

• Themachineexecutingsuchoperationsareallowedtochooseanyoneoftheseoutcomessubje

cttoaterminationcondition.

• This leads to the concept of non deterministic algorithms.

• To specify such algorithms in SPARKS, we introduce three statements

Choice (s) ……… arbitrarily chooses one of the elements of the set S.

Failure …. Signals an unsuccessful completion.

Success: Signals a successful completion.

• Whenever there is a set of choices that leads to a successful completion then one such 

set of choices is always made and the algorithm terminates.

• A non deterministic algorithm terminates unsuccessfully if and only if there exists no 

set of choices leading to a successful signal.

• A  machine  capable  of  executing  an  on  deterministic  algorithm  is  called  an  un 

deterministic machine.

• While non deterministic machines do not exist in practice they will provide strong 

intuitive  reason  to  conclude  that  certain  problems  cannot  be  solved  by  fast 

deterministic algorithms.

Nondeterministic algorithms

A non deterministic algorithm consists of

Phase 1: guessing

Phase 2: checking



• If  the  checking  stage  of  a  non  deterministic  algorithm  is  of  polynomial  time-

complexity,  then  this  algorithm  is  called  an  NP  (nondeterministic  polynomial) 

algorithm.

• NP problems : (must be decision problems)

–e.g. searching, MST 

Sorting

Satisfy ability problem (SAT)

travelling salesperson problem (TSP)

Example of a non deterministic algorithm

// The problem is to search for an element x //

// Output j such that A(j) =x; or j=0 if x is not in A //

j choice (1 :n )

if A(j) =x then print(j) ; success endif 

print (‘0’) ; failure 

complexity 0(1); 

Non-deterministic decision algorithms generate a zero or one 

as their output.

Deterministic search algorithm complexity. (n)

• Many optimization problems can be recast into decision problems with the property 

that  the decision problem can be solved in polynomial  time iff  the corresponding 

optimization problem can.

• The decision is to determine if there is a 0/1 assignment of values to xi 1≤ i ≤ n such 

that ∑pi xi ≥ R, and ∑ wi xi ≤ M, R, M are given numbers pi, wi ≥ 0, 1 ≤ i ≤ n.

• It is easy to obtain polynomial time nondeterministic algorithms for many problems 

that  can be deterministically solved by a systematic  search of a solutions pace of 

exponential size.

8.3 Satisfiability

• Letx1, x2, x3…. xn denotes Boolean variables.

• Let xi denotes the relation of xi.

• A literal is either a variable or its negation.

• A formula in the prepositional calculus is an expression that can be constructed using 

literals and the operators and ^ or v.

• A clause is a formula with at least one positive literal.

• The satisfy ability problem is to determine if a formula is true for some assignment of 

truth values to the variables.

• It is easy to obtain a polynomial time non determination algorithm that terminates s 

successfully if and only if a given prepositional formula E(x1, x2……xn) is satiable.

• Such an algorithm could proceed by simply choosing (non deterministically) one of 

the 2n possible assignment so f truth values to (x1, x2…xn) and verify that E(x1,x2…xn) 

is true for that assignment.

 The satisfy ability problem

The logical formula:



 x1v x2 v x3

& -x1

& -x2

the assignment : x1 ← F , x2 ← F , x3 ← T will make the above formula true .

(-x1, -x2, x3) represents x1 ← F, x2 ← F, x3 ← T

If there is at least one assignment which satisfies a formula,  then we say that this 

formula is satisfiable; otherwise, it is un satisfiable.

An un satisfiable formula:

x1vx2

&x1v-x2

&-x1vx2

&-x1v-x2

Definition of the satisfiability problem: 

Given a Boolean formula, determine whether this formula is satisfiable or not.

Aliteral: xi or-xi

Aclause:x1vx2v-x3Ci

A formula: conjunctive normal form (CNF)

C1&C2&…&Cm

8.4 Some NP-hard Graph Problems

ThestrategytoshowthataproblemL2isNP-hardis

1. Pick a problem L1 already known to be NP-hard.

2. Show how to obtain an instance I1 of L2m from any instance I of L1 such that from 

the  solution  of  I1  We  can  determine  (in  polynomial  deterministic  time) 

thesolutiontoinstanceIofL1

3. Conclude from (ii) that L1L2.

4. Conclude from (1),(2), and the transitivity of that 

            Satisfiability L1 L1L2

Satisfiability L2

L2is NP-hard

1. Chromatic Number Decision Problem (CNP)

a. A coloring of a graph G = (V,E) is a function f : V � { 1,2, …, k} i V

b. If (U, V) E then f(u) f(v).

c. The CNP is to determine if G has a coloring for a given K.

d. Satisfiability with at most three literals per clause chromatic number problem.

CNP is NP-hard.

2. Directed Hamiltonian Cycle(DHC)

Let G=(V,E) be a directed graph and length n=1V1

TheDHCisacyclethatgoesthrougheveryvertexexactlyonceandthenreturnstothestartingv

ertex.

The DHC problem is to determine if G has a directed Hamiltonian Cycle.

Theorem: CNF (Conjunctive Normal Form) satisfiability DHC

DHC is NP-hard.

3. Travelling Salesperson Decision Problem (TSP) : 

1. The problem is to determine if a complete directed graph G = (V,E) with edge 

costs C(u,v) has a tour of cost at most M.



                       Theorem: Directed Hamiltonian Cycle (DHC) TSP

2. But from problem (2) satisfiability DHC Satisfiability TSP

                       TSP is NP-hard.

8.5 Sum of subsets

TheproblemistodetermineifA={a1,a2,…….,an}(a1,a2,………,anarepositiveintegers)  has  a 

subset S that sum s to a given integer M.

Scheduling identical processors

Let Pi1 ≤ i ≤m be identical processors or machines Pi.

Let Ji 1≤ i ≤ n be n jobs.

Jobs Ji requires ti processing time

A schedule S is an assignment of jobs to processors.

For each job Ji, S specifies the time interval s and the processors on which this job i is to be 

processed.

A job cannot be processed by more than one process or at any given time.

The problem is to find a minimum finish time non-preemptive schedule. The finish time of S 

is FT(S) = max {Ti}1≤i≤m. Where Ti is the time at which processor Pi finishes processing all 

jobs (or job segments) assigned to it

An NP-hard problem L cannot be solved in deterministic polynomial time.

By placing enough restrictions  on any NP hard problem, we can arrive at  a polynomials 

solvable problem.

Examples

CNF-Satisfy  ability  with  at  most  three  literals  per  clause  is  NP-hard.  If  each  clause  is 

restricted  to  have  at  most  two  literals  then  CNF-satisfy  ability  is  polynomial  solvable. 

Generating  optimal  code  for  a  parallel  assignment  statement  is  NP-hard, However  if  the 

expressions  are  restricted  to  be  simple  variables,  then  optimal  code can  be  generated  in 

polynomial time.

Generating optimal code for level one directed a-cyclic graphs is NP-hard but optimal code 

for trees can be generated in polynomial time.

Determining if a planner graph is three color able is NP-Hard

Todetermineifitistwocolorableisapolynomialcomplexityproblem.

(Weonlyhavetoseeifitisbipartite) 

General  definitions  -  P,  NP,  NP-hard,  NP-easy,  and  NP-complete...  -  Polynomial-time 

reduction • Examples of NP-complete problems



P - Decision problems (decision problems) that can be solved in polynomial time - can be 

solved “efficiently”

NP - Decision problems whose “YES” answer can be verified in polynomial  time,  if we 

already have the proof (or witness)

Co-NP - Decision problems whose “NO” answer can be verified in polynomial time, if we 

already have the proof (or witness)

E.g. the satisfy ability problem (SAT) - Given a Boolean formula is it possible to assign the 

input x1...x9, so that the formula evaluates to TRUE?

 If the answer is YES with a proof (i.e. an assignment of input value), then    we can check 

the proof in polynomial time (SAT is in NP). We may not be able to check the NO answer in 

polynomial time. (Nobody really knows.)

 •NP-hard

                  A problem is NP-hard iff an polynomial-time algorithm for it implies   a 

polynomial-time algorithm for every problem in NPNP-hard problems are at least as hard as 

NP problems

•NP-complete

A problem is NP-complete if it is NP-hard, and is an element of NP (NP-easy)



Relationship  between  decision  problems  and  optimization  problems  every  optimization 

problem has a corresponding decision problem

Optimization: minimize x, subject to constraints yes/no: is there a solution, such that x is less 

than c? an optimization problem is NP-hard (NP-complete)  if  its corresponding decision 

problem is NP-hard (NP-complete)

Polynomial-time reductions 

How to know another problem, A, is NP-complete?

To prove that A is NP-complete, reduce a known NP-complete problem to A

Requirement for Reduction

Polynomial time

YES to A also implies YES to SAT, while 

NO to A also implies No to SAT (Note that A must also have short proof for YES answer)

 An example of reduction 3CNF

3SAT: is a boolean formula in 3CNF has a feasible assignment of inputs so that it evaluates 

to TRUE? 

reduction from 3SAT to SAT (3SAT is NP-complete)

Examples of NP-complete problems

 Vertex cover

 Independent set

 Set cover

 Steiner tree

Vertex cover 

 Given a graph G = (V, E), find the smallest number of vertexes that cover each edge



 Decision problem: is the graph has a vertex cover of size K?

Reduction

 Vertex cover 

 An example of the constructive graph

Vertex cover

We must prove: the graph has a n+2c vertex cover, if and only if the 3SAT is satisfiable (to 

make the two problem has the same YES/NO answer!)

 Vertex cover 

- If the graph has a n+2c vertex cover 

1) There must be 1 vertex per variable gadget, and 2 per clause gadget 

2) In each clause gadget, set the remaining one literal to be true



• Vertex cover 

 If the 3SAT is satisfiable 

1) Choose the TURE literal in each variable gadget 

2) Choose the remaining two literal in each clause gadget

Independent set

Independent set: a set of vertices in the graph with no edges between  each pairof nodes. 

given a graph G=(V,E), find the largest independent set

reduction from vertex cover:

Independent set

If G has a vertex cover S, then V/S is an independent set

Proof: consider two nodes in V/S: if there is an edge connecting them, then one of them must 

be in S, which means one of them is not in V/S

If G has an independent set I, then V/I is a vertex cover

Proof: consider one edge in G:

If it is not covered by any node in V/I, then its two end vertices must be 

both in I, which means I is not an independent set

Given a universal set U, and several subsets S1...Sn

find the least number of subsets that contains each elements in the universal set

vertex cover is a special case of set cover:



1) the universal set contains all the edges 

2) each vertex corresponds to a subset, containing the edges it covers

 Steiner tree 

 Given a graph G = (V, E), and a subset C of V 

 find the minimum tree to connect each vertex in C reduction 

 Steiner tree 

- G’ is a complete graph 

- for every node u in G, create a node u in G’ 

- for every edge (u, v) in G, create a node (u, v) in G’ 

- in G’, every node (u, v) is connected to u and v with distance 1 

- in G’, every node u and v is connected with distance 1 

- other edges in G’ are of distance 2

 In the Steiner tree problem for G’, choose C to be the set of all nodes (u, v) 

 G’ has a minimum Steiner tree of close m+k-1 iff G has a minimum vertex cover of size k

Examples of NP-complete problems



***********


